Membrane Systems for Waste Water Re-Use in Downstream Applications

EnviroArabia 2007

Dr. Michael Howdeshell Mr. Robert Wenta

2007 Siemens Water Technologies Corp

Presentation Outline

- Membrane Terminology
- Membrane Basics
- Membrane Re-Use Applications
- Re-Use Issues / Solutions

Membrane Terminology

- Membrane: Semi-permeable filter with controlled pore structure
- Filtrate (or permeate): Effluent from membrane process
- Immersed Membrane: Membrane submerged directly in mixed liquor, outside to inside flow under vacuum
- MBR: Membrane BioReactor-biological + membrane filtration process
- UF: UltraFiltration-from about 0.006 to 0.8 μm
- UF-S: UltraFiltration-Submerged

Membrane Terminology (cont.)

- Flux: Normalized flow across membranes surface area (gfd = gpd/ft² or LMH = L/m²/h)
- TMP: Trans-Membrane Pressure, pressure across the membrane surface (in psi or kPa)
- Permeability: Flux divided by TMP (gfd/psi or LMH/bar)
- CIP: Clean In Place-membrane cleaning procedure

What Is A Membrane ?

A membrane is a solid-liquid separation device used to separate suspended solids from the water-similar to a gravity clarifier

It is a Physical Barrier: suspended solids larger than the nominal pore size remain in the process tank

Membrane Filtration Spectrum

SIEMENS

What Does It Look Like (fiber scale)

- Homogeneous-Monolithic structure
 - Single material that requires no bonding
 - Hollow fiber configuration only
 - Strong, self-supporting
 - Single manufacturing process
- Polypropylene
 - 0.1 micron

- Membrane "skin"
- Acid & caustic resistant
- PVDF
 - 0.04 micron
 - Acid & chlorine resistant

Porous substrate

What Does It Look Like (MBR Rack scale) ?

Membrane (MBR) Tank Scale

UF-S Systems Tank Scale

How Does Petro[™] MBR work at the Membrane Tank Level?

Water Technologies

SIEMENS

General Process Description-Petro[™] MBR

Membrane Re-Use Applications

Membrane Re-Use Applications

- Greenfield Petro[™] MBR Systems
- UF Addition to Existing WWTP Facility
- Conversion of Existing WWTP to Petro[™]MBR

Re-Use Applications

Greenfield Petro™ MBR Systems

- Direct use for Cooling Tower Make Up (dependent on cooling tower requirements and source water TDS, etc.)
- Pretreatment for RO→ Boiler Feed Water (carbon-enhanced Petro[™] MBR)
- Address difficult settling sludge from certain gas processing facilities
- Re-Use as Irrigation Water
- Added Benefits
 - More reliable COD/N Reduction
 - Reduced Sludge production
 - Decreased footprint-Hydraulic/BOD/COD per Land Area

Re-Use Applications (cont.)

UF (Tertiary Filtration) Addition to Existing WWTP Facility

- Direct use for Cooling Tower Make Up
- Pretreatment for RO-Boiler Feed Water (Only if biological system has the capability to remove TOC to low levels)
- Re-Use as irrigation water
- Re-Use in contaminated aquifer re-injection systems (if biological system has the capability to remove TOC to low levels)

 Note-UF following biological systems is generally more expensive and requires more area, so for green field systems, Petro[™] MBR is typically more economical

Re-Use Issues / Solutions

UF Addition to Existing WWTP Facility-Issue

	Issue	Solution
Clarifier Performance	Solids loading	Verify bio-plant design equipment redundancy
Foulant	EPS from stressed culture in clarifier	Run minimum SRT in gravity chamber

Re-Use Applications

Conversion of Existing WWTP to Petro[™] MBR

- Direct use for Cooling Tower Make Up
- Pretreatment for $RO \rightarrow$ Boiler Feed Water (carbon-enhanced)
- Re-Use as irrigation water
- Re-Use in contaminated aquifer re-injection systems (more reliable nitrogen removal)

Re-Use Issues / Solutions

Conversion of Existing WWTP to Petro[™] MBR

	Issue	Solution
Membrane Fouling	Potential for free oil	Upgrade with proper pre-treatment equipment
	Unknown fouling or scaling potential	Conduct testing to determine proper CIP
Performance	Rapid loss of permeability	Conduct testing to prove process design is adequate for service- provide redundancy
Aeration capacity	Insufficient capacity for MBR needs	Upgrade with higher capacity equipment
Membrane damage	Chemical additive usage	Run bench scale tests with membrane post-mortem inspection

Why Choose UF for Re-Use?

- Re-use of the treated water-as upgrade to existing system with gravity clarification for:
 - Irrigation water systems
 - Cooling tower make up
 - Pretreatment for Reverse Osmosis (RO) for boiler feed water

Summary - UF for Re-Use

Primarily well-suited for add-on to existing bio plant for TSS reduction

- Effluent suitability
 - cooling tower make up (Cooling Tower-dependent)
 - RO feed water (depending on TOC level after biological treatment)
 - irrigation water systems (if biological system is capable of reaching the limits)
- Higher effluent quality
 - Lower suspended solids
 - Lower turbidity

Summary – Petro[™] MBR

- Effluent suitability
 - cooling tower make up
 - RO feed water (especially with carbon-assisted Petro[™] MBR)
 - irrigation water systems
- Upgrade of facilities to increase capacity with existing tanks
- High effluent quality
 - More reliable nitrification
 - Lower suspended solids
 - Lower turbidity
 - Lower dissolved organic contaminants (vs. conventional or CMF addition to conventional WWTP)

Thank you for your attention!

